SECONDE SOLUTION DE LA QUESTION 369. [7]

Nouvelles Annales de Mathématiques, 1.er série, tome XVI (1857), pp. 251-252.

Soient

$$p = 0$$
, $q = 0$, $r = 0$

les équations des côtés BC, CA, AB d'un triangle ABC;

$$q-r=0$$
, $r-p=0$, $p-q=0$

sont donc les équations de trois droites passant respectivement par les sommets A, B, C et se rencontrant au même point D; soient α , β , γ les points où AD, BD, CD rencontrent BC, CA, AB. Soient

$$lp + mq + nr = 0,$$

 $l_1p + m_1q + n_1r = 0$

les équations de deux droites R, R₁ qui rencontrent respectivement BC, CA, AB aux points a, a₁; b, b₁; c, c₁; par conséquent, les équations des droites Da, Da₁, son

$$n(r-p) - m(p-q) = 0$$
,
 $n_1(r-p) - m_1(p-q) = 0$.

Le rapport anharmonique des quatre droites DB, DC, Da, Da,

$$\begin{array}{ccc} r-p &= 0 \; , \\ p-q &= 0 \; , \\ r-p- & (p-q) = 0 \; , \\ r-p-\frac{m}{n}(p-q) = 0 \end{array}$$

Cremona, tomo I.

est $\frac{n}{m}$ (Salmon, *Conic sections*, p. 53) et le rapport anharmonique des droites conjuguées DC, DB, D α , D α 1,

$$\begin{aligned} p-q &= 0 \,, \\ r-p &= 0 \,, \\ p-q- & (r-p) &= 0 \,, \\ p-q-\frac{n_1}{m} \, (r-p) &= 0 \,, \end{aligned}$$

est $\frac{m_1}{n_1}$; donc les points B, C, α , α , α , seront en involution si l'on a

$$mm_1 = nn_1$$
.

Ainsi les conditions nécessaires et suffisantes pour que les trois systèmes de cinq points

B, C,
$$\alpha$$
, a , a_1 ,
C, A, β , b , b_1 ,
A, B, γ , c , c_1 ,

 (α, β, γ) points doubles) soient en involution, seront

$$ll_1 = mm_1 = nn_1$$
.

Il s'ensuit qu'en prenant arbitrairement la droite R,

$$lp + mq + nr = 0,$$

la droite R₁ sera

$$\frac{p}{l} + \frac{q}{m} + \frac{r}{n} = 0.$$